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DEVICE FUNDAMENTALS

Fabrication

The devices are made in a process similar to the fabrication
steps outlined in Ref. [1], with an important improvement: we
have added crossovers to suppress stray microwave chip modes
by tying the ground planes together with low impedance con-
nections. Otherwise, the many control wires in our chip could
lead to segmentation of the ground plane, and the appearance
of parasitic slotline modes [2]. The device is made in a five-
step deposition process, (I) Al deposition and control wiring
etch, (II) crossover dielectric deposition, (III) crossover Al de-
position, (IV) Qubit capacitor and resonator etch, (V) Josephson
junction deposition. The qubit capacitor, ground plane, readout
resonators, and control wiring are made using molecular beam
epitaxy (MBE)-grown Al on sapphire [3]. The control wiring is
patterned using lithography and etching with a BCl3/Cl2 reactive
ion etch. A 200 nm thick layer of SiO2 for the crossover dielec-
tric is deposited in an e-beam evaporator, followed by lift-off.
We fabricate crossovers on all the control wiring, using a SiO2

dielectric that has a non-negligible loss tangent. An in-situ Ar
ion mill is used to remove the native AlOx insulator, after which
a 200 nm Al layer for the crossover wiring is deposited in an
e-beam evaporator, followed by lift-off. We used 0.9 µm i-line
photoresist, lift-off is done in N-methyl-2-pyrrolidone at 80◦C.
A second BCl3/Cl2 etch is used to define the qubit capacitor and
resonators; this step is separate from the wiring etch to prevent
the sensitive capacitor from seeing extra processing. Lastly, we
use electron beam lithography, an in-situ Ar ion mill, and double
angle shadow evaporation to deposit the Josephson junctions, in
a final lift-off process. See Ref. [1] for details.

Coherence Times

Energy relaxation times T1 of all qubits are shown in Fig. S1,
measured over a frequency range from 4 to 6 GHz. We find typ-
ical T1 values between 20 and 40 µs. Variations in T1 arise pre-
dominantly from the qubit interacting incoherently with weakly
coupled two-level defects, as discussed in Ref. [1]. In this pre-
vious work we found that larger area (with longer and wider

legs) Xmon qubits showed higher T1 values as well as large,
frequency-specific suppressions in the energy coherence: for
certain frequencies the T1 would decrease to values below 10 µs.
We attribute these large suppressions to chip modes, arising from
imbalances in the microwave control lines, to which the larger
Xmon geometries can couple more strongly. The data in Fig. S1
exhibit fewer of such suppressions; we believe that this improve-
ment is due to the addition of crossovers.

We have investigated the Ramsey dephasing times versus fre-
quency for qubit Q1. The Ramsey decay envelope is measured
by phase tomography (see Ref. [1]) and fitted to the function
exp[−t/Tφ,1 − (t/Tφ,2)

2]. Fast dephasing, from white noise as
well as energy relaxation, is captured in Tφ,1, and slow, Gaus-
sian dephasing is captured in Tφ,2. Typical dephasing times are
plotted in Fig. S2. We find a fast dephasing time on the order
of 10 µs; this value is below the energy coherence time, and
may be due to white noise from the room temperature control
electronics. The slow, Gaussian dephasing times are consistent
with a 1/f -spectrum with a spectral density of SΦ(1 Hz) =
1.1 µΦ0/

√
Hz.

Qubit Frequencies and Coupling

Qubit frequencies and nearest neighbour coupling strengths
are listed in Table S1.

TABLE S1: Qubit frequencies and nonlinearities (f21 − f10) at the
zero flux bias (degeneracy point) and coupling strengths in MHz. The
coupling strength is measured at frequencies between 4.2 and 4.7 GHz.
We find a typical next-nearest neighbour coupling of g/2π = 1.3 MHz,
consistent with microwave circuit simulations.
qubits Q0 Q1 Q2 Q3 Q4

f10 5805 5238 5780 5060 5696
nonlinearity -217 -226 -214 -212 -223
g01/2π (4.22 GHz) 27.7
g12/2π (4.70 GHz) 30.8
g23/2π (4.66 GHz) 30.4
g34/2π (4.65 GHz) 30.9
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Z Crosstalk

We measure a crosstalk between the frequency Z control lines
and qubits that is small, approximately 1 − 2%. After adding
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FIG. S1: Energy Relaxation for Xmon Qubits. Frequency depen-
dence of T1 for all qubits. The frequency step size is 2 MHz. The
values for T1 are generally in the 20-40 µs range, we find T1 values up
to 57 µs. The depression at 4.36 GHz in qubit Q3 is due to a coherently
coupled junction defect.
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FIG. S2: Ramsey dephasing. Frequency dependence of the fast (Tφ,1)
and slow (Tφ,2) Ramsey dephasing times of qubit Q1. Flux bias points
Φ/Φ0 range from 0.1 to 0.28, and δf10/δ(Φ/Φ0) range from -16 to -50
GHz.

compensation pulses to orthonormalise the control, we find a
remnant crosstalk of below 10−4. The crosstalk matrix MΦ is
shown below, defined as: Φactual = MΦΦideal, with Φ the flux
threaded through each qubit’s superconducting quantum inter-
ference device (SQUID) loop.

MΦ =




1.000 −0.023 −0.014 −0.009 −0.006
0.019 1.000 −0.022 −0.011 −0.007
0.017 0.000 1.000 −0.016 −0.009
0.016 0.008 −0.015 1.000 −0.014
0.013 0.014 −0.016 −0.010 1.000




EXPERIMENTAL SETUP

The wiring diagram and circuit components are shown in
Fig. S3.

FLATTENING THE Z RESPONSE

Imperfections in the frequency control wiring can cause rip-
ples after a pulse. Left unchecked, these can affect gate fi-
delity significantly, appearing as single qubit phase errors, see
Fig. S4. We employ a two-step procedure to correct for these
non-idealities. We first calibrate the room temperature electron-
ics by measuring the unit step (Heaviside step) response at the
output of the Z control board.

With the board response corrected by deconvolution, we mea-
sure the qubit phase as a function of time ∆τ after the end of a
unit step. This probes the transfer function of the fridge wiring,
contact pads and on-chip control lines. When no unit step is
applied, the X/2 pulse rotates the qubit state onto the Y axis.
When applying a unit step, deviations in frequency will cause



W W W. N A T U R E . C O M / N A T U R E  |  3

SUPPLEMENTARY INFORMATION RESEARCH

D
A

C

110 MHz +A+
-A- 110 MHz

110 MHz +B+
-B- 110 MHz

225 MHz

225MHz

2
0

d
B

2
0

d
B

7
.5

 G
H

z
IR

6
d

B

0
.5

 G
H

z
2

0
d

B
1

0
d

B
IR

3
d

B

R
C

C
u

P

2
0

d
B

2
0

d
B

2
0

d
B

7
.5

 G
H

z
IR

1
0

d
B

7
.5

 G
H

z
IR

P
H

E
M

T

Quantum 
Processor

LOR Q

I
A

D
C

250 MHz +
-

A+

A- 250 MHz

250 MHzB+

B- 250 MHz

Voltage 

Source

Q

I

D
A

C

250 MHz +A+
-A- 250 MHz

250 MHz +B+
-B- 250 MHz

7.5 GHz

R
e
a
d
o
u
t

Q
u
b
it 

C
o
n
tr

o
l

R
e

a
d

o
u

t
G

e
n

e
ra

to
r

R
e

a
d

o
u

t
A

n
a

ly
ze

r

300K

Dilution Refrigerator

30mK

77K

4K

Repeat for other 
four qubits

Q

I

D
A

C

250 MHz +A+
-A- 250 MHz

250 MHz +B+
-B- 250 MHz

7.5 GHzX
Y

Z

Gaussian Filter

Differential Amplifier

Marki FLP-0750 

Marki IQ-0307 

1.5k Cold Resistor

Copper Powder & Light Tight LPF

Light Tight LPF

Marki FLP-0750 

DC Bias T

Mini Circuits VLFX-500

Parametric Amplifier

QuinStar CTH1392KS

Mini Circuits VLFX-225

Low Noise Factory LNC4_8A

Components List
Commercial

Miteq AFS3-0010200-22-10P-4

Custom Made

1

2

3

4

12

14

15

16

17

18

Analog to Digital Converter (ADC)

19

Digital to Analog Converter (DAC)

Voltage Source ("Fastbias Card")

Magnetic Shield

“IR-black” Coating

6

7

8

9

10

11

13

20

1

2

3

4

12

14

15

16

17

18

19

5

6

7

8

9

10

11

13

20

5

+
-

+
-

LOQ

LOQ

LOR

LOQ
Anritsu MG3692C 

Hittite HMC-T2100 

FIG. S3: Electronics and Control Wiring. Diagram detailing all of the control electronics, control wiring, and filtering for the experimental
setup. Each qubit uses one digital to analog converter (DAC) channel for each of the X, Y, and Z rotations. Additionally, we use a DC bias tee to
connect a voltage source to each qubit frequency control line to give a static frequency offset. All five qubits are read out using frequency-domain
multiplexing on a single measurement line. The readout DAC generates five measurement tones at the distinct frequencies corresponding to each
qubit’s readout resonator. The signal is amplified by a wideband parametric amplifier [4], a high electron mobility transistor (HEMT), and room
temperature amplifiers before demodulation and state discrimination by the analog to digital converter (ADC). All control wires go through various
stages of attenuation and filtering to prevent unwanted signals from disturbing the quantum processor. Two local oscillators (LOQ) are used for
qubit XY control, at 4.5 and 5.6 GHz. The readout LOR is at 6.76 GHz. All LO, DAC, and ADC electronics are locked to a 10 MHz SRS FS725
rubidium frequency standard.

the Bloch sphere vector to deviate from the Y axis. A subse-
quent Y/2 pulse will make this apparent in the measured excited
state probability. We note that this measurement is first order
sensitive to small deviations – the difference in probability de-
notes the phase deviation (∆φ ≈ ∆P|1〉) – whereas Ramsey and
quantum state tomography are second order sensitive: The π/2
pulses used in tomography project the state onto the Z axis, thus
the reconstruction of the phase or state is done from probabilities
(P ≈ 1−∆φ2/2) which are second order sensitive to φ.

We find that the transfer function can be described by an
exponential response with two timescales. Typical values are
100 ns and 5 ns. The longer timescale is consistent with
the L/R time arising from the bias tee, with L ≈ 6 µH
and R = 50 Ω. We believe that the short timescale arises
from reflections. The impulse response of an imperfect wire

with reflection r, placed time T away from the wire’s end is
H(ω) = 1 − r +

∑∞
k=1 r

k exp(−2ikωT ); at low frequen-
cies this can be approximated by the impulse response function
h(t) ∝ exp(−t/2rT )u(t). Assuming reflection coefficients on
the order of -10 dB and round trip times 2T between qubit and
mixing plate electronics on the order several ns, the effective
decay time 2rT is on the order of a few ns.

With the corrections in place, by deconvolving both the board
response and fridge wiring, remnant control pulse ripples are
suppressed to below 10−4: We find qubit phase deviations con-
sistent with a 30 kHz drift after applying a 0.5 GHz detuning
step pulse, see Fig. S4. The calibrations discussed above are key
for obtaining accurate CZ gates [5].
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FIG. S4: Control pulse ripple. Qubit phase response to a unit step
(amplitude: 0.5 GHz) applied to the frequency control line, with and
without correction. The pulse sequence is shown in the inset, with the
dashed line representing the unit step. With correction, a phase drift of
0.03 rad in 150 ns is observed, consistent with a remnant control pulse
ripple of 30 kHz.

SINGLE QUBIT AND TWO-QUBIT GATE FIDELITIES OF
ALL QUBITS

A comprehensive listing of all single qubit gate fidelities of all
qubits is shown in Table S2, the gate durations are in Table S3.
A listing of all CZ gate fidelities can be found in Table S4.

SCALING UP THE ARCHITECTURE

In the present experiment, we have demonstrated single-
and two-qubit gates at the surface code threshold in a one-
dimensional array with five Xmon qubits. Scaling up to a larger
one-dimensional array is trivial by adding more qubits on the
sides. For scaling up to a two-dimensional grid, we envision
an approach with Xmon qubits placed in a square lattice, ca-
pacitively coupled to their four nearest neighbours. The Xmon
qubit, with the four arms available for coupling, has been de-
signed with this task in mind. The qubits are placed in one layer,
and in the envisioned approach control and readout are placed
on other planes. Methods to connect these planes are known:
Bump bonds and vias allow for making galvanic connections be-
tween multiple layers, and capacitive coupling between planes
is made easy by the presence of a dielectric substrate. While
this approach is conceptually straightforward, the required mi-
crofabrication technology will need to be developed further. A
schematic of the proposed approach is shown in Fig. S5.

While it is straightforward to lithographically define more
qubits on a chip, the crucial challenge in scaling up to a two-
dimensional array – with added wiring and readout – is to main-
tain the high coherence and gate fidelity, without sacrificing ad-
dressability of individual qubits. We believe that this will guide
the approach to and the development of the required microfab-

rication. We are optimistic about scaling up, as coherence was
maintained in moving from isolated qubits (in Ref. [1]) to the
one-dimensional array here.

TABLE S2: Single qubit gate fidelities for all qubits, determined by
Clifford-based randomised benchmarking. Averaged over all gates and
all qubits we find an average fidelity of 0.9992. The standard deviation
is typically 5 · 10−5. The gate times are between 10 and 20 ns, see
Table S3, except for the composite gates H and 2T, which are twice as
long. The idle is as long as the shortest microwave gate (12 ns to 20 ns).

gates Q0 Q1 Q2 Q3 Q4

I 0.9990 0.9996 0.9995 0.9994 0.9991
X 0.9992 0.9996 0.9992 0.9991 0.9991
Y 0.9991 0.9995 0.9993 0.9992 0.9991
X/2 0.9992 0.9993 0.9993 0.9994 0.9993
Y/2 0.9991 0.9993 0.9995 0.9994 0.9994
-X 0.9991 0.9995 0.9992 0.9989 0.9991
-Y 0.9991 0.9995 0.9991 0.9987 0.9991
-X/2 0.9991 0.9992 0.9993 0.9990 0.9995
-Y/2 0.9991 0.9992 0.9995 0.9990 0.9994
H 0.9986 0.9986 0.9991 0.9981 0.9988
Z 0.9995 0.9988 0.9994 0.9991 0.9993
Z/2 0.9998 0.9991 0.9998 0.9995 0.9996
2T a 0.9989 0.9994 0.9989 0.9990
average over gates 0.9992 0.9992 0.9994 0.9991 0.9992
average over qubits 0.9992

aAs the T gate is not a Clifford generator, the recovery gate is not within the
group when interleaving. This precludes Clifford-based randomised benchmark-
ing of the T gate. To quantify this gate to some extent, we have benchmarked
2T gates, physically implemented by applying two T gates in series. If the gate
error is predominantly gate-aspecific, the T gate error is half that of the 2T gate,
suggesting that the average T gate fidelity is 0.9995

TABLE S3: Single qubit gate times in ns.

gates Q0 Q1 Q2 Q3 Q4

XY axes π rotations 20 20 12 18 12
XY axes π/2 rotations 20 20 12 12 12
Z axis π, π/2, π/4 rotations 10 10 10 10 10
I 20 20 12 12 12
H 40 40 24 30 24
2T 20 20 20 20 20

TABLE S4: CZ gate fidelities for all qubit pairs, determined by
Clifford-based randomised benchmarking. Gate times are between 38
and 45 ns; Q0-Q1: 45 ns, Q1-Q2: 43 ns, Q2-Q3: 43 ns, Q3-Q4: 38 ns.

qubits Q0 Q1 Q2 Q3 Q4

CZQ0−Q1 0.9924 ± 0.0005
CZQ1−Q2 0.9936 ± 0.0004
CZQ2−Q3 0.9944 ± 0.0005
CZQ3−Q4 0.9900 ± 0.0006
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FIG. S5: Schematic of the proposed approach to scaling up. The
Xmon qubits are placed in a checkerboard pattern in a single layer, with
data qubits (light) and measurement qubits (dark). Control, readout,
and wiring are placed in other layers; connections between the layers
are made by capacitive coupling, and by bump bonds and vias for gal-
vanic connections. The row with the five Xmon qubits coloured red
and orange is the experiment we have implemented (see Fig. 1 in the
main Letter), and can clearly be seen as a building block for the two-
dimensional array.

VERIFYING EXPERIMENTAL FIDELITIES ARE AT THE
SURFACE CODE THRESHOLD

We shall simulate inceasing size versions of Fig. S5. Note
that the single-qubit and two-qubit gate physics is identical in
this architecture, justifying the use of the reported experimen-
tal fidelities. One additional feature in 2-D is the need to use
a periodic array of frequencies, leading to interactions between
qubits with the same frequencies and driving of the entire set of
qubits with a given frequency when any given qubit is manip-
ulated. The magnitude of the interactions and driving crosstalk
will only decay quadratically with qubit separation.

We have simulated these crosstalk effects in detail and have
found them to be surprisingly tolerable, as such errors are only
two-body correlated at worst, and non-neighbouring, leading to
information local to both halves of the error, and efficient correc-
tion [6]. We shall therefore neglect crosstalk in the simulations
of the section to focus the analysis on the fidelity of the reported
gates.

Nominally, the threshold fidelity of the surface code is 0.99
[7], provided one assumes there is no leakage, the two-qubit
interaction is the dominant source of error, and gates can be
performed perfectly in parallel. The physical device described
in this work has complex behavior outside these assumptions,
necessitating a device-specific calculation of the surface code
threshold fidelity.

When a CZ gate is applied, no qubit neighbouring either of the
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FIG. S6: CZ error budget. (a) In the Ramsey error filter technique
an interference pattern arises in the measured probability (black dots)
whose magnitude is proportional to the |02〉-state leakage. The data are
smoothed (red) for enhanced visibility. The frequency of these oscilla-
tions (indicated by the arrow, 1.6 ns) is the idling frequency difference
between qubits (800 MHz), minus the nonlinearity (200 MHz) as we are
measuring the crossing between |11〉 and |02〉. Other frequencies are
believed to arise from improper |11〉 state preparation. (b) Randomised
benchmarking sequence fidelity for qubits Q2 and Q3. Decoherence is
quantified by idling for the same duration as the CZ gate. Controls error
can be identified by applying the control pulse on Q2, without doing a
full CZ by detuning Q3. For the randomised benchmarking data of the
CZ (not shown): rref = 0.0198 and rCZ = 0.0269.

qubits involved in the CZ can be involved in their own CZ gate.
We have devised a 16 step CZ application pattern that accounts
for these parallelism constraints and still measures all stabilizers.
The longest measured CZ time of 45 ns will be used. Further-
more, the CZ gate, which is always applied between one mea-
surement qubit and one data qubit, has a small amount of leakage
(< 0.2%) on the measurement qubit, but practically negligible
leakage on the data qubit. We shall neglect this small amount of
measurement qubit leakage. Methods of coping with leakage in
topological codes are known [8].

Measurement with fidelity 0.99 in 200 ns and initialization
with fidelity 0.99 in 50 ns will be assumed [9]. Y/2 gates will
be used instead of Hadamard gates, with the slowest 20 ns time
assumed and an average fidelity of 0.9992 (calculated only from
the slower Y/2 gates) assumed. An identity error of 0.05% per
10 ns will be assumed, consistent with experimental data.

Detailed simulations of 5x5, 9x9, and 13x13 qubit arrays with
the above parameters have been performed making use of the lat-
est correction techniques [10]. The logical error rate was found
to be the same in all cases, justifying our claim of a device with
parameters at the surface code threshold.

CZ GATE ERROR BUDGET

We experimentally measure the three predominant error
mechanisms of the CZ gate: 2-state leakage, decoherence and
control error. 2-state leakage is measured using the same tech-
nique as outlined in [11]. The system is initialised in the |11〉-
state followed by two CZ gates. As the time between these two
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gates is varied, we measure an interference pattern in the proba-
bility where the magnitude is proportional to the |02〉 state leak-
age, see Fig. S6a. The error is given by ∆P/4, with ∆P the
peak-to-peak difference in probability [11]. We also see addi-
tional interference patterns that come from imperfect |11〉 prepa-
ration at the beginning of the sequence. We note that leakage oc-
curs predominantly in the qubit which undergoes the frequency
trajectory.

We measure the decoherence contribution from each qubit by
performing interleaved randomised benchmarking with an idle
of the same duration as the CZ gate, see Fig. S6b. The contribu-
tion to error from the waveform is measured by interleaved ran-
domised benchmarking on the waveform for the CZ gate alone,
with a slightly lower amplitude to avoid interactions with the
other qubit. We treat this as a single-qubit phase gate. With the
idle error measured, we can separate out decoherence and single
qubit phase error. Because we are detuning the qubit down in
frequency to a part of the spectrum where it is more sensitive to
flux noise, inducing more dephasing, the single qubit phase error
is an upper bound. With these experiments we can construct an
error budget for all of the dominant error mechanisms, as seen
in Table S5.

QUANTIFYING XY CONTROL CROSSTALK USING
SIMULTANEOUS RANDOMISED BENCHMARKING

Addressability, the ability to individually control a single
qubit without affecting neighbouring qubits, is of great im-
portance when building a multi-qubit system. In our five
Xmon qubit processor the addressability is mostly compro-
mised in three ways: Z control crosstalk, microwave XY control
crosstalk, and off-resonant qubit-qubit coupling. Z crosstalk can
be reduced to below the 10−4 level. Microwave XY crosstalk
becomes a problem if a qubit’s control pulses perform rotations
on a neighbouring qubit. Off-resonant qubit-qubit coupling will
very slowly perform a CZ gate between the qubits, potentially
causing unwanted phase shifts with rate ΩZZ ,

ΩZZ = − 2g2(η1 + η2)

(∆− η1)(∆ + η2)
, (S1)

with η1 and η2 the qubit nonlinearities, and ∆ the difference in
qubit frequencies.

We performed crosstalk characterisation on nearest neighbour
and next-nearest neighbour qubits. Nearest neighbours are far
detuned (> 800 MHz), hence the microwave XY crosstalk is

TABLE S5: CZ gate error budget, including the contribution to the total
error in percent.

Decoherence (55%) Q2 ≥ 0.0017 (24%)
Q3 0.0022 (31%)

Control (45%) single qubit phase error ≤ 0.0017 (24%)
state leakage 0.0015 (21%)
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FIG. S7: Simultaneous randomised benchmarking of nearest and
next nearest neighbours. (a) Benchmarking the effect of Q2 on Q3

and vice-versa (fQ2
= 5.72 GHz, fQ3

= 4.67 GHz). The sequence
fidelities are shown for operating Q2 individually (I ⊗ C1, green open
squares), Q3 individually (C1 ⊗ I , purple open circles), and Q2 and
Q3 simultaneously (C1 ⊗ C1, full symbols). By tracing out one qubit,
its effect on the other qubit becomes apparent: the errors per Clifford
are: rQ2=0.0011, rQ2|Q3=0.0012, rQ3=0.0018, rQ3|Q2=0.0020. (b)
Benchmarking of Q0 and Q2 (fQ0

= 5.30 GHz, fQ2
= 5.72 GHz).

The errors per Clifford are: rQ0=0.0016, rQ0|Q2=0.0018, rQ2=0.0011,
rQ2|Q0=0.0011. Note that the errors per Clifford are consistent with the
average gate fidelities in Table S2: for Q2, the average gate fidelity is
1− rQ2/1.875=0.9994. Coupling strengths can be found in Table S1.

expected to be negligible, but the off-resonant CZ interaction
may be non-negligible. Next-nearest neighbors have a much
smaller coupling (g/2π = 1.3 MHz), but are only detuned by
100-400 MHz; hence both the off-resonant CZ as well as mi-
crowave XY crosstalk may be detrimental. We investigate these
mechanisms by using the simultaneous randomised benchmark-
ing techniques outlined in Ref. [12]. We can single out errors
that come from poor addressability by performing randomised
benchmarking on each qubit individually, and operating both
qubits simultaneously.

The randomised benchmarking data are shown in Fig. S7.
We can determine the effect of controlling qubit Q3 on Q2, by
first benchmarking qubit Q2 individually (I ⊗ C1, green open
squares), and benchmarking both qubit Q2 and Q3 simultane-
ously, and tracing out the contribution of Q3 (C1⊗C1, green full
squares). The decay for both traces is virtually indistinguishable,
the added error is below 10−4. Likewise, we find that the effect
on Q3 of controlling Q2 simultaneously leads to an added error
per Clifford of 2 · 10−4. For next nearest neighbours, we find
added errors per Clifford of 1 · 10−4 and 2 · 10−4. For both the
nearest neighbour and next-nearest neighbours the added error
per Clifford of operating them simultaneously is < 2 · 10−4, the
inferred added error per single qubit gate is therefore < 10−4.
We conclude that XY control crosstalk is a minor error mecha-
nism, enabling a high degree of addressability in this architec-
ture.
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GENERATION OF THE CLIFFORD GROUPS

Single qubit Clifford group C1

The single qubit Clifford group C1 is the group of 24 rota-
tions which preserve the octahedron in the Bloch sphere. We
implement the group using microwave pulses only, decomposed
into rotations around the X and Y axes using the generators: {I,
±X/2, ±Y/2, ±X, ±Y}, as summarised in Table S6. The av-
erage number of single qubit gates per single qubit Clifford is
1.875.

Two qubit Clifford group C2

Using the single qubit Cliffords, we can construct the two
qubit Clifford group C2 following Ref. [13]. This group has four
classes: the single qubit class, the CNOT-like class, the iSWAP-
like class, and the SWAP-like class. The CNOT and SWAP-like
class are terminated with a gate from the 3-element group S1,
as described in Table S7. The single qubit class has 242 = 576
elements:

C1

C1

TABLE S6: The 24 single qubit Cliffords written in terms of the phys-
ical microwave gates applied in time. The Paulis and 2π/3 rotations
form the tetrahedron symmetry group. Here, X/2 denotes a π/2 rota-
tion over the X axis, with unitary RX(π/2) = exp(−iπσX/4).

Single qubit Cliffords

Paulis

I
X
Y
Y, X

2π/3 rotations

X/2, Y/2
X/2, -Y/2

-X/2, Y/2
-X/2, -Y/2
Y/2, X/2
Y/2, -X/2

-Y/2, X/2
-Y/2, -X/2

π/2 rotations

X/2
-X/2
Y/2

-Y/2
-X/2, Y/2, X/2
-X/2, -Y/2, X/2

Hadamard-like

X, Y/2
X, -Y/2
Y, X/2
Y, -X/2
X/2, Y/2, X/2

-X/2, Y/2, -X/2

The CNOT-like class has 242 × 32 = 5184 elements.

C1 • S1

C1 S1

The iSWAP-like class also has 5184 elements,

C1 �� S1

C1 �� S1

Finally the SWAP-like class, with 576 elements, is given by

C1 ×

C1 ×

bringing the full size of the two-qubit Clifford group to 11520.
An approach using a reduced set of gates was used in Ref. [14].

Here, we rewrite the two-qubit Cliffords in terms of the CZ
entangling gate. We rewrite the CNOT, iSWAP and SWAP in
terms of the CZ:

• → •
−Y/2 • Y/2

�� → −Y/2 • Y/2 • Y/2

�� −X/2 • −X/2 • X/2

× → • −Y/2 • Y/2 •

× −Y/2 • Y/2 • −Y/2 • Y/2

As the single qubit gates preceeding the entangling operation
(CZ gate) can be absorbed into C1, and the final single qubit
gates can be absorbed into S1 (see Table S7), we have for the
CNOT-like class,

C1 • S1

C1 • S
Y/2
1

TABLE S7: The S1 sets written in terms of physical gates in time; these
are elements of the single qubit Clifford group, and therefore physically
implemented in the same way.

S1

I
Y/2, X/2
-X/2, -Y/2

S
X/2
1

X/2
X/2, Y/2, X/2
-Y/2

S
Y/2
1

Y/2
Y, X/2
-X/2, -Y/2, X/2
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the iSWAP-like class,

C1 • Y/2 • S
Y/2
1

C1 • −X/2 • S
X/2
1

and the SWAP-like class,

C1 • −Y/2 • Y/2 •

C1 • Y/2 • −Y/2 • Y/2

The average number of gates for C2 is 1.5 CZ gates and 8.25
single qubit gates. For the idle, we wait as long as the shortest
single qubit gate. For a single qubit gate time of 20 ns and a CZ
gate time of 40 ns, the average duration of C1 is 37.5 ns, and C2

is 160 ns.
The Clifford group is a 2-design. A set of unitaries {Uk}Kk=1

is a 2-design if and only if [15]

K∑
k,k′=1

|Tr
(
U †
k′Uk

)
|4/K2 = 2. (S2)

As a consistency check, we have verified that the single and two-
qubit Cliffords we generate are indeed a 2-design with the above
equation.

ESTIMATING THE ERROR PER CLIFFORD

Here, we connect the error per Clifford r to the errors of
the single and two-qubit gates, measured when performing ran-
domised benchmarking. This shows the physical significance
of the error per Clifford, and is an important self-consistency
check. We can give an estimate for the error per Clifford by de-
termining the average number of single and two-qubit gates that
go into a Clifford, combined with the single and two-qubit gate
fidelities that we measure using interleaved randomised bench-
marking. We assume that gate errors are small and uncorrelated,
such that adding error when composing gates is a good approxi-
mation.

Single qubit Clifford group C1

There are 45 single qubit gates used across 24 Cliffords. With
the assumption that all single gates have the same error, the av-
erage error per Clifford is

rC1 = 1.875rSQ, (S3)

with rSQ the average single-qubit gate error.

Two qubit Clifford group C2

The four classes of two-qubit Cliffords are composed from the
two-qubit CZ gate, and the single-qubit gate sets C1, S1, SY/2

1 ,
and S

X/2
1 . The respective errors are given by: rS1

= 5rSQ/3,
r
S

X/2
1

= 5rSQ/3, r
S

Y/2
1

= 2rSQ.
We now derive the average gate composition for the two-qubit

Cliffords. For the single-qubit class:

rC1⊗C1
=

90

24
rSQ. (S4)

CNOT-like class:

rCNOT = rCZ +
89

12
rSQ. (S5)

iSWAP-like class:

riSWAP = 2rCZ +
113

12
rSQ. (S6)

SWAP-like class:

rSWAP = 3rCZ +
35

4
rSQ. (S7)

The error per Clifford for C2 is then given by

rC2
=

576

11520
rC1⊗C1

+
5184

11520
rCNOT+ (S8)

5184

11520
riSWAP +

576

11520
rSWAP (S9)

=
3

2
rCZ +

33

4
rSQ. (S10)

And the error per two-qubit Cliffords interleaved with a CZ is

rC2+CZ =
5

2
rCZ +

33

4
rSQ. (S11)

Comparison to Experiment

Using these simple formulas, we find that our randomised
benchmarking data are self-consistent. Using reasonable values
of 0.001 and 0.006 for the single and two-qubit gates respec-
tively, we calculate rC2 = 0.0173, which is close to the exper-
imental value of rref = 0.0189 in Fig. 3 in the main Letter; for
the interleaved case the calculated value of rC2+CZ = 0.0233 is
close to the experimental value of 0.0244 as well.

N = 5 GHZ STATE PULSE SEQUENCE

The pulse sequence for the algorithm to construct the five
qubit GHZ state is shown in Fig. S8a. We use Hahn spin echoes
on idling elements to suppress slow dephasing (Tφ,2). The fre-
quency diagram for the qubits is shown in Fig. S8b. Nearest
neighbour qubits are detuned by 0.7 to 1.5 GHz, next-nearest
neighbours are detuned by 0.4 to 0.5 GHz.
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FIG. S8: Pulse sequence for generating the N = 5 GHZ state and frequency diagram. (a) The control signals for all five qubits. The algorithm
consists of a Y/2 pulse on Q0 followed by successive CNOT gates (implemented here with a CZ gate and -Y/2, Y/2 gates applied to the target)
on each progressive pair of qubits in the array. The highlighted region (I) shows Hahn spin echo pulses X applied to Q0 to suppress dephasing
while idling. Spin echo pulses are also applied to Q1 and Q2. (II) We detune Q1 to bring it closer in frequency to Q2 for the CZ gate. (III)
Simultaneously with the Q1-Q2 entangling operation, we detune Q3 away to allow for selective entanglement. (b) The frequency diagram shows
the idling frequencies for all qubits, and is one of the operating modes of the quantum processor.

0
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1

0
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0
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1
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FIG. S9: Quantum state tomography of the GHZ states: Imaginary parts. Imaginary parts of the density matrices ρ for the N = 2 Bell state
and the N = 3, 4 and 5 GHZ states. For clarity, the same scale as for the main Letter is used. |Imρ| is below 0.03, 0.04, 0.04 and 0.07 for N = 2
to 5, respectively.

QUANTUM STATE TOMOGRAPHY

The density matrices of the N = 2 Bell and N = 3, 4, 5
GHZ states are characterised using quantum state tomography.
After state preparation, gates from { I, X/2, Y/2, X }⊗N are
applied; with the measured probabilities the state can then be
reconstructed. We use quadratic maximum likelihood estima-
tion, using the MATLAB packages SeDuMi and YALMIP, to
extract the density matrix while constraining it to be Hermitian,
unit trace, and positive semidefinite; the estimation is overcon-
strained. Non-idealities in measurement and state preparation
are suppressed by performing tomography on a zero-time idle
[16, 17]. We note that tomography is only “as good as” the

tomography pulses, which have an average fidelity above 0.999.
Fidelities and uncertainties correspond to the mean and standard
deviation of 10 measurements, consisting of 104 (N = 2, 3)
or 6 · 103 (N = 4, 5) repetitions each. The density matrices
plotted in the main Letter are constructed by averaging all mea-
sured probabilites, effectively using 105 (N = 2, 3) or 6 · 104
(N = 4, 5) repetitions.

The imaginary part of the density matrices (ρ) is plotted in
Fig. S9. The Pauli operator representation is shown in Fig. S10.

∗ These authors contributed equally to this work
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FIG. S10: Pauli operator representation for the N = 2 Bell state and the N = 3, 4 and 5 GHZ states. The bars show expectation values
of combinations of Pauli operators, ideal in grey, experimental values in colour. Apart from the trivial even number Z-correlations, the data show
significant elements only for the largest correlations.


